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Abstract—A novel low RF loss trenched coplanar waveguide
(CPW) transmission-line structure fabricated using evaporated
aluminum tracks on a high-resistivity (10-k
� cm) silicon (HRS)
substrate is reported. By assuming that Schottky contact bound-
aries exist at the metal silicon substrate interface in the CPW
line, the finite-element analysis method is used to determine the
simulated behavior of the structure. The distributed capacitance,
leakage conduction current, and dynamic shunt conductance
for the line are shown to be a function of dc bias applied
to the line, and also to reduce as a function of trench depth
in the normal bias regime. Experimental results show: 1) the
reduction of RF losses in comparison with conventional aluminum
conductor CPW line structures may be as much as 0.5 dB/cm
at 30 GHz; 2) by proper positive dc biasing of a CPW line
on a p-type HRS substrate, a further reduction (0.2 dB/cm)
in RF loss at 30 GHz can be achieved; 3) predicted trends
in line leakage current, capacitance, and relative characteristics
impedance are experimentally verified. The proposed waveguide
structure may be utilized in a special fabrication process designed
for RF/microwave applications.

Index Terms—Capacitance, conductance, CPW, loss, MMIC.

I. INTRODUCTION

M ILLIMETER-WAVE frequencies are being proposed
for high-volume low-cost/size/mass commercial appli-

cations. These applications include sensors for vehicle moni-
toring and control, radio local area networks (LAN’s), secure
cellular-radio systems, and short-range wide-band radio links.
To achieve low cost with moderate-to-high-volume circuit pro-
duction, monolithic circuitry is preferred. At microwave fre-
quencies monolithic microwave integrated circuits (MMIC’s)
employ GaAs technology with integrated active devices. How-
ever, GaAs real estate is expensive, particularly when passive
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circuit elements occupying large areas are required, e.g., filters,
diplexers, antennas, etc.

A number of alternative substrates can be considered for
planar millimeter-wave circuit or interconnect design. While
GaAs offers low dielectric loss, high dielectric constant, and
compatibility with MESFET and high electron-mobility tran-
sistor (HEMT) active-device technology, it is recognized that
large-area GaAs substrates are costly to produce with low
defect density. Silicon technology is mature, both for the
production of uniformly polished high purity substrates, and
for device fabrication and integration. High-resistivity silicon
(HRS) offers constant thickness and high dielectric constant
which is stable with frequency. In addition, polished silicon
wafer substrates are very cost effective, and it has been
reported that transmission lines on silicon substrate material
have acceptable RF losses even in the microwave-frequency
regime [1]–[4].

By employing silicon as a low-cost low-loss substrate
medium, relatively large-area passive elements can be realized
at millimeter-wave frequencies. Moreover, discrete silicon or
GaAs devices [5] can be incorporated into these silicon cir-
cuits. This provides a flexible technology for planar circuits in
which the active device most suitable for a particular task may
be employed. A future extension may be the direct integration
of SiGe heterojunction bipolar transistor (HBT) devices to
give silicon-based circuits the capability of efficient operation
at high microwave frequencies [6], [7]. The HRS substrate
has been reassessed as a potential microwave material for
MMIC’s by Reyeset al. in 1995 [4] and, most recently, by
Burghartzet al. [7]. Reyeset al. show that the RF dissipation
loss in a coplanar waveguide (CPW) line constructed directly
on an HRS substrate is one order lower than that of a
CPW line with an oxide insulation layer between metal and
semiconductor. In this paper, we demonstrate that a reduction
in RF dissipation loss can be realized by means of trenching
the HRS substrate and by dc biasing the CPW signal line.
The proposed waveguide structure may be utilized in a special
fabrication process designed for RF/microwave applications.

At the signal frequencies lower than 100 GHz, the transmis-
sion losses in conventional CPW lines are mainly contributed
by conductor ohmic loss and dissipation loss within the
dielectric substrate material. Conductor loss is influenced by
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Fig. 1. Schematic diagram of the modeled trenched CPW line and its
electrical equivalent circuit.

the conductivity of the metal, and the conduction current
distributions on the CPW lines. Substrate dissipation loss is
dependent on the leakage conduction current distribution and
the electric-field distribution in the semiconductor substrate.
The metal–semiconductor contacts between CPW metalliza-
tion and the host silicon substrate in conjunction with different
designed line configurations will lead to a variety of electric-
field patterns. These, in turn, result in different conduction
current distributions, different line shunt conductances, and
ultimately, different RF losses.

In this paper, we illustrate the effect on electric-field,
conduction current, distributed capacitance, and characteristic
impedance due to vertically etched side grooves in the gaps in
the CPW line between signal and ground tracks, as shown
in Fig. 1. Each of these is evaluated as a function of the
dc bias on the CPW signal track with respect to its ground
planes. A number of theoretical predictions are presented and
compared with experimental results. The effects of temperature
on transmission lines based on silicon substrate have been
previously reported in [7] and [8].

II. A PHYSICALLY BASED DEVICE MODEL

FOR TRENCHED CPW LINES

The typical electromagnetic field distributions obtained for
a conventional dielectric substrate-based CPW line by Gupta
in 1981 [9] are altered by the presence of trench effects
and metal–semiconductor contact effects. Consider a trenched
CPW line based on HRS substrate, as shown in Fig. 1.
This is constructed on (H) 650-m-thick 10-k cm p-type
silicon substrate with 100 crystal orientation. The line di-
mensions are selected to give an approximate 50-character-
istic impedance on an untrenched line and simultaneously to
accommodate 200-pitch ground–signal–ground (GSG) CPW
probes. Line spacing is 40 m, signal track width is
70 m, and line length is 6100 m. The widths of the
ground lines are 2.5 mm. Using standard silicon-processing
methods, a 1.46-m-thick (t) aluminum metallization layer is

evaporated onto the HRS substrate (this is thinner than the
thickness of 4 m associated with three skindepth penetration
on bulk aluminum for a nominal operating frequency of 30
GHz).

For most semiconductors (owing to the presence of interface
states), when metal is evaporated directly onto the HRS, a
metal–semiconductor Schottky barrier is formed [10]. The
actual barrier height is determined by the property of the
semiconductor surface and the contact metal. Schottky contacts
in the simulation are modeled by the work function of the
electrode metal and an optional surface recombination velocity
(in this paper, values of 4.71 eV and 1.62 10 m/s are
used, respectively). The CPW trench depthsexamined are
0, 3, 6, 9, and 12 m. Trenching is obtained by processing
the substrate in a capacitively coupled glow–discharge plasma
excited by a 70-W 13.56-MHz RF source at CFpressure of
150 mtorr. The observed silicon etch rate is about 1.5m per
hour. The silicon surface charges are assumed negligible in the
trench. Based on the nominal resistivity, the p-doping density
is around the order of 10 cm .

For the geometry in Fig. 1 the two-dimensional Poisson’s
equation, electric-charge carrier motion equations, and carrier
continuity equations in the CPW line based on the HRS sub-
strate are solved selfconsistently by the finite-element-analysis
method using a commercial semiconductor device simulation
package.1 Results from the simulation are as follows.

1) Typical static electric-field line distributions in the
trenched CPW lines are shown in Fig. 2 for different
trench depths. From these, it can be seen that there are
some special regions near the silicon surface where the
electric line distributions are radically different from
those of the classical CPW case. It is also interesting
to note that the depth of this region is of the order of
the silicon diode depletion region depth (10–20m),
which has been estimated for an applied reverse bias
voltage 2.0 V and a p-silicon doping concentration
1–3 10 cm , bulk resistivity 10 k cm [11].
Furthermore, as can be seen, the maximum electric fields
are effectively decreased as the trenched depth increases.
In each case, the dc-voltage difference between signal
line and ground plate is chosen to be 2.0 V.

2) The corresponding leakage conduction–current contour
distributions are shown in Fig. 3. As can be seen, the
current density with its pattern crowding at the edges of
the signal and ground lines is effectively reduced as the
trenching depth increases.

3) Simulated distributed capacitance versus signal bias is
plotted for different trenched CPW lines in Fig. 4.
All of the distributed capacitances show a nonlinear
response as the signal bias changes, owing to the pres-
ence of two metal–semiconductor contact layers which
act as two back-to-back Schottky diodes, as shown in
Fig. 1. The trend that a maximum capacitance is formed

1SILVACO Int. ATLAS User’s Manual, Device Simulation Software, Edition
4, Oct. 30, 1996, pp. 3-2–3-54.
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Fig. 2. E-line distributions in modeled CPW devices.

around zero-bias operation occurs, since at least one of
the Schottky diodes is always in the reverse operation
regime when the signal bias is moved away from the
zero-bias point. Moreover, the asymmetry of CV curves
with increased bias can be eliminated in the simulation
by equating the ground track width to one half of the
signal linewidth.

4) Simulated dynamic shunt conductance versus signal bias
for different trenched CPW lines is shown in Fig. 5. For
negatively bias (forward) operation, the dynamic shunt
conductance of the modeled CPW line is relatively larger
than that of positively biased (reverse) case. This is due
to the difference of two Schottky diodes. In the zero
bias and reverse bias regimes, relatively small leakage
currents are induced; here, the calculated shunt conduc-

tance is reduced as the trench depth increases. However,
for large forward bias (GSG voltage 3.0 V), large
leakage currents are induced. Simulated results show that
unlike the reduced CPW line capacitance which occurs
with increased trench depth, the deeper the trench, the
larger the shunt conductance.

5) The simulated total distributed capacitance, the total
leakage current (electron plus hole motion current),
the effective shunt conductance , and the normalized
characteristic impedance as function of trench depth
are listed in Table I.

6) Simulated leakage current versus signal bias for different
trenched CPW lines is shown in Fig. 6. As can been
seen, theI–V curve at different trench depth shows the
forward and reverse current–voltage characteristics of a
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Fig. 3. Current flow patterns in modeled CPW devices.

Fig. 4. Simulated distributed capacitance per unit length in trenched CPW lines as function of signal bias.

back-to-back diode pair. Both the currents for positive
and negative bias are reduced due to the trenching
effects.

In Table I, the electrostatic distributed capacitances are
estimated using the derivative of the induced electrical charge

on the signal line with respect to variation of signal voltage,
i.e., a small ac analysis approach [12]. For a nontrenched CPW
line, the calculated capacitance per unit length (1.42 pF/cm) is
18% smaller than the 1.7 pF/cm (that of a conventional CPW
line with an ideal dielectric constant), estimated by conformal
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Fig. 5. Simulated shunt conductance per unit length as function of signal bias.

Fig. 6. Simulated and measuredI–V curves for different trenched CPW lines.

TABLE I
SIMULATED PARAMETERS. HERE, GSG VOLTAGE = 2.0 V,
Z0 = 53:8 
 BASED IN QUASI-STATIC ANALYSIS [8], [11]

mapping techniques [9], [13]. The total leakage conduction
current is obtained from the surface integral of the modeled
current flow distribution. The dynamic shunt conductance is
evaluated from the derivative of signal voltage with respect
to the induced variation of leakage current. Finally, the nor-
malized characteristic impedance for different trenched CPW
lines is estimated by the formula , where

, refer to the characteristic impedance and capacitance
for the nontrenched CPW line with the effective dielectric
constant . As this equation comes from a quasi-static
consideration [9] and uses the static capacitance, it is a lossless
line estimation and, therefore, only an approximation. As can
be seen from Table I, the distributed capacitance, leakage
conduction current, and shunt conductance have been shown
to be reduced, owing to the trench effects. The characteristic

impedance increases by a factor of 1.17 as the trench depth
increases from 0 to 12m.

III. M EASUREMENT

I–V measurements of CPW lines fabricated according to
the previous specifications were carried out by use of an HP
41424A modular dc source/monitor and cascade wafer probe
station (typical curves being shown in Fig. 6). The leakage
currents are reduced as the trench depth increased, and the
measured reverse saturation currents are comparable with the
simulated results. These nonlinear characteristics can be ex-
plained by the existence of two back-to-back diodes below the
signal and ground plate, as shown in Fig. 1. Here, the leakage
current path is completed through Schottky diodes , ,
and bulk silicon resistor . It should be remembered that
although the area of the Schottky diode is much greater
than the center diode, the nonlinear leakage current in the
electric path is mainly influenced by the reverse biased diode.

CV curves for the CPW line were obtained by use of a wafer
probe station and an HP 4275A multifrequency inductance,
capacitance, and resistance (ICR) meter at an RF (10-MHz)
amplitude of 0.01 V (peak-to-peak). The results (shown in
Fig. 7) show the same basic trend as the simulations in Fig. 4.
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Fig. 7. Measured CV curves in different trenched CPW lines.

Fig. 8. Characteristic impedance extracted from measured CV data for different trenched CPW lines.

TABLE II
MEASURED RF PARAMETERS VERSUS SIGNAL BIAS FOR A CPW LINE (h = 0) BASED ON HRS

(� = 10 k
cm) SILICON 4-in WAFER AT SPOT FREQUENCY OF 30 GHz

However, the peaks on curves in Fig. 7 are shifted to the
forward bias direction compared with those in Fig. 4. This
phenomena is under further examination. Fig. 8 shows the
corresponding characteristic impedance evaluated from the
measured capacitances. It can be seen from Figs. 7 and 8
that the equivalent capacitance presented to the propagating
wave tends to decrease after the lines are trenched, and
the characteristic impedance for 12-m trenched CPW lines
increases roughly by a factor of 1.3 compared to that of
nontrenched lines.

Two-port scattering parameters were measured using an
HP 8510B network analyzer and cascade wafer probe sta-
tion with 200- m GSG coplanar probes calibrated using
line–reflect–match (LRM) to the probe tips, taking care to
eliminate multireflection losses [14].2 From the measured
scattering parameters of the RF dissipation losses, character-
istic impedances of the lines have been evaluated. Typical
calculated data are shown in Fig. 9(a)–(c). As can be seen
in Fig. 9, without trenches, RF losses are 1.2 dB/cm at 10

2The RF Capacitor Handbook, American Technical Ceramics, 1979.
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(a)

(b)

(c)

Fig. 9. (a) Typical calculated and linear fitted RF dissipation losses for
a trenched CPW line(h = 3 �m). (b) Linear fitted RF losses for the
trenched CPW lines. (c) Calculated characteristic impedances from measured
S-parameters for the trenched CPW lines.

GHz and 1.9 dB/cm at 30 GHz. With 9-m-deep trenches, the
line dissipation losses are reduced to 0.8 dB/cm at 10 GHz and
1.6 dB/cm at 30 GHz. Finally, Table II shows the typical RF

losses at different signal bias for a spot frequency of 30 GHz.
As can be seen, the losses for zero-bias condition is about
0.2–0.3 dB/cm higher than that for the 4.0-V bias level.

The reduction of RF losses as the signal bias increases
may be quantitatively explained by consideration of Fig. 5, in
which all of the dynamic shunt conductances in the different
trenched CPW lines reduce as the signal bias is increased in
the positive direction.

IV. CONCLUSIONS

For the first time, the characteristics of trenched CPW’s for
Si MMIC application have been established both experimen-
tally and by semiconductor device simulation. By introducing
a vertical trench in the gaps between signal and ground plate,
and by dc biasing the CPW line, RF losses can be reduced.
This reduction is primarily due to the smaller substrate leakage
conduction current and to the reduction in conductor loss
owing to the removal of field concentration from the vicinity of
the conductor edges. The proposed waveguide structure may
be utilized in a special process designed for RF/microwave
applications.
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